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ABSTRACT 

The results of On sofic systems I on topological Markov chains extending sofic 
systems are completed. To homomorphisms of sofic systems are canonically 
associated homomorphisms of Markov extensions. Also considered is a class 
of finitary codes for sofic systems. 

1. Introduction 

This paper is the sequel and conclusion of  [4]. It contains some remarks that 

complement and complete the results of  [4]. We continue to use notation and 

terminology as in [4]. 

In [4] we considered for a sofic system (Y, S~) an extension 

p+(Y, Sz) : (X+(Y, Sz), S+(Y, S z ) ) ~ ( Y ,  Sz), 

and for a topologically transitive sofic system (Y, Sz) with periodic points 
dense also an extension 

pO (y,  S~)" (X°+ (Y, S~), S ° (Y, S~)) ~ (Y, Sz). 

The canonicity of pO (y,  Sz) was shown in [4]. In the meantime a different 

proof was given by M. Boyle, B. Kitchens and B. Marcus [ 1 ]. In Section 2 we 
show that also p+(Y, Sz) is canonical. 

In Section 3 we consider homomorphisms. In particular, we point out that to 

homomorphisms between sofic systems there are canonically associated topo- 

logical Markov chains, and homomorphisms between these chains. The mate- 
rial of  this section is very close to [1, 2, 3]. 
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In Section 4 we consider a class of finitary codes between topologically 
transitive sofic systems (Y, S~) with periodic points dense. For such systems 
the section r ° (Y, S~) is a finitary code that, in a sense, is the unique inverse of 
pO (y, S~). Moreover, z°+ (Y, S~) has bounded anticipation and its coding time 
has moments of all orders. Thus pO (y, Sz) belongs to a class of finitary codes 
that was considered in [5] for topological Markov chains. For the case that the 
dimension groups of the chains (X°+ (Y, Sz), S ° ( Y, Sz)) are totally ordered, we 
point out, that by the results of [5] the shift equivalence of the chains 
(X°+ (Y, Sz), S ° (Y, Sz)) is a necessary and sutficient condition for the existence 
of such codes. 

2. Canonicity of an extension 

We consider a sofic system (Y, Sy). 

(2.1) LEMMA. Let u be an automorphism o f  (X+(Y,  Sz), S+(Y,  Sz)) such 
that 

p + ( Y, Sz)u = p + ( r ,  Sz). 

Then u ~ ~ e i d e n t i ~ .  

PROOF. Let 

and define 

by 

(y,, 

)Ei ~ o) + ( Y, S~)P(_~,i)( Y), i E Z 

( y~, S~- ' E,),ez = u(( y,, S~-I E,),ez). 

We have to show that 

(I) E~ =E~, i E Z .  

Let N ~ N be such that u and u-  1 are given by block maps 

~ : P[ - N,N]X + ( Y ,  S¢) --~ ~ + ( Y , Sz) ,  

,b  : P[ _ + ( Y ,  & )  - -  ta + ( r ' ,  

Thus 

u((yi, S~- ' Ei)~sz) = (~((Yj, SJz - ' Ej)~_N<_j<i +u)),ez, 

and, for i E Z ,  E~ is determined by YI~-N.~+m and E,-N. Let 

Z(+)~Ei+N+I, 
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set 

and define 

l yj, j < i + N, 

Y}=[z) +), j > i + N ,  

I Ej, j < = i + N  

E: = [Pu,~)(Z(z~,+)u,JI) A Ej), j > i + N 

E:~_o)+(Y, S~)P(-~o.j)(Y), j~_Z 
by 

-l -, u((y~, ~ Ej),~z). ( y ; , ~  Ej)j~z= ' - ' '  
Then 

,2;-- Ej, j <= i, 

and this implies that 

! - !  - -  

Ei+s+ = P(i+N,oo)(Z(y[i,i+Nl) N Ei) -- Ei+N+I- 

It is also z(+)~/~'+~+l and we have therefore 

L'i+u+, D E,+N+,, i~Z .  

By symmetry (I) is shown. Q.e.d. 

(2.2) THEOREM. Let 

u :(Y, s~)---(?, st) 

be a topological conjugacy of  sofic systems. Then u+ is the unique topological 
conjugacy of  (X+(Y, Sz), S+(Y, St.)) onto (X+(17, S~), S+(1;', S~)) such that 

up +(Y, Sz) = p +(}', S~)u+. 

PROOF. This follows from Theorem (2.14) of [4] and Lemma (2.1). Q.e.d. 

3. Homomorphisms 

Consider a sofic system (Y, Sz) that is given as the image of an irreducible 
topological Markov chain (X~, St) under a homomorphism v with finite degree 
d. Let, for some IEZ+,  v be given by a block map 
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~ : et- laj(xa)--" z .  
Thus 

v~ = ( ~ t i - l , , . l ) ) i ~ z ,  

By general arguments one has for all blocks 

a ~ eo,k~(Y), j ,  k ~ Z, 
that 

Y, ~ X,i. 

j < k  

inf IPli_1,~+ll(v-lZ(a))l > d 
j < i < k  

and there always exists for some j ,  k ~ Z, j _-< k an a E PU,kI(Y) such that 

inf }et~_li+lj(v-lZ(a))l = d. 
j < i < k  

We call such blocks ~-finitary. For the next lemma compare Lemma (2.4) of  
[4] and its proof. 

(3.1) LEMtaA. Every ¢P-finitary block is a finitary block of(Y,  S~). 

PROOF. Recode (X~, St) to make • into a 1-block map. Let 

a~Po.,kl(Y), j , k ~ Z ,  j < k ,  

be a q~-finitary block, and let i0, j < i0 < k, be such that 

IPioV-tZ(a)t =d .  
For all 

Y- ~P(-~,k~(Y) ~ Z(a), 
one has 

to+(Y, S~)(y_) 

= U 
#kEPk v -Iz(y _) 

Hence the lemma is proved once it is shown that for all 

y_ ~P(_®,kI(Y) N Z(a)  
one has 

{ ~(tri)k <i <~ " (~i)k<,<~o ~ P(k,~)( XA ), A ( ~k, &k + 1) = 1 }. 

Y- ~P(-o~.kl(Y) tq Z(a) 

Assume that for some 

PkV-I(y_) = PkV-IZ(a). 
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one has that PkV-~Z(Y-) is a proper subset ofPkv -~(Z(a)). Then there exists by 
compactness a j '  < j  such that one has for 

a '  = (Y-)t/',kl 

that Pkv-~Z(a') is a proper subset ofPkv-~Z(a), and it follows that P~ov- ~Z(a') 
is a proper subset ofP~ov-~Z(a), for otherwise 

et~,klv - t Z ( a ' )  = {,~ ~ e t~klX~ : ~ (a~)  = a~, io < i < k ,  a~ ~ P~ov - ~Z(a ') } 

---- { d  EPtio, klX4 : d P ( d i )  = a~, io <= i < k, a~o~ P~oV-~Z(a)} 

= Pli~.klV-IZ(a)" 

Thus 

IP~ov-~Z(a')l < d ,  

which is a contradiction, since d is the degree of  v. Q.e.d. 

The next proposition is properly formulated in terms of state transition 
graphs (labeled directed graphs) as are customarily used to represent sofic 
systems. Let (A(tr, a')),,o.~ be a Z+-matrix and consider the directed graph 
with vertex set E and A (o, o') arcs with initial vertex tr and final vertex a'.  With 
this directed graph there is associated the topological Markov chain 
(X~, S~×N), where 

XA ---- {(x,, k~),~zE (Y~ X N) z : 1 < k, _-< Z(x~, x,+,), i ~Z} .  

A state transition graph is obtained by labeling each arc of  the graph with a 
symbol from some symbol set X. In other word~, one specifies a map 

W: {(a, k, a')~Y~ × N X Y. : 1 < k <=A(tr, tr')} ~ .  

W as a 2-block map gives a homomorphism W of (XA, S,-×r~) onto the sofic 
system that is defined by the state transition graph, 

vv((x,, k,),~z) = (W(x,_, ki-~, x,)),~z, (x,, k~),~,~X,,. 

The labeling W is said to be l-right resolving, and the state transition graph 
(I:, A, V) is called a Shannon graph if for every a E X and for every ¢ E ~: there is 
at most one arc with initial vertex tr that is labeled t~. We consider now a Shannon 
graph (I:, A, V). Note that W is here a fight resolving homomorphism. We denote 

co, (v)(a)  = ((w(o~, k~, a,+ ~)),~z+ :(a,,  k,)i~,+ ~efo.~(X,,), ao -- a}. 

We say that tr, tr 'E X are W-equivalent (more precisely W( + )-equivalent) if 
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to+(W)(a) is equal to to+(W)(a'). The set 7.v of W-equivalence classes is the 
vertex set of a Shannon graph in which there is an arc with initial vertex the W- 
equivalence class oftr that is labeled a if and only if there is an arc in (E, A, W) 
with initial vertex tr that is labeled t~. We denote the matrix of this state 
transition graph by Av and its labeling by ~.  Observe that all ~-equivalence 
classes consist of one element of Y-.v. 

Set 
e~.,((x~, k~)iez) = x~, (x~, k~)~EzE (E X N) z. 

(3.2) PROVOSmON. Let (7., A, W) be an irreducible Shannon graph, and let 

Then a block 
vv: (XA, 

a ~ Ptj,kl(~'), j <--_ k, j ,  k ~ Z 

is finitary for (~', St) if  and only if  all elements ofPz.kVff ~Z(a) are W-equivalent. 

PROOF. If all elements of P~.kV6 ~Z(a) are W-equivalent, then a is a finitary 

block for (Y, St). Indeed, then 

to+(Y, Sr)(a) = to+(W)(a), trEP~,kv~v~Z(a). 

On the other hand, i fa  is a finitary block for (Y, St) and also is W-finitary then 
the right resolving property of W implies that all elements of P~.kV~ IZ(a) are 
W-equivalent. Assume then that a is not W-finitary, and that there are 

a, tr'EP~.kV~Z(a) 

that are not W-equivalent. The Shannon graph being irreducible there exist 
then for some J < j  W-finitary blocks 

b, b'EPtj,kj(Y) n Z(a) 

that are then, by Lemma (3. I), also finitary for (Y, S~), such that all elements of 
P~,kV~Z(b) are W-equivalent to tr and all elements of Pr~,kV~ZZ(b ') are W- 

equivalent to a'. Then 

to+(I;', St)(b) = to+(W)(a) ÷ to+(W)(a') = to÷(]', S~)(b'), 

and a is not finitary for (Y, S~). Q.e.d. 

As we have seen, given an irreducible Shannon graph (~, A, ~r), 

(lz, &), 
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and a finitary block a ~ Pu,0](]:'), J < 0, for (~,  St), one has 

co+(] 7", St)(a) = og+(~F)(a), a~P~,oVff, lZ(a). 

We can therefore identify E ° (I 7, St) with Y_~ and v,v is then a presentation of 

p°+(L St). 

(3.3) THEOREM. The following are equivalent for a sofic system (Y, S~): 
(a) (Y, Sz) is the homomorphic image of an irreducible topological Markov 

chain under a bi-resolving homomorphism. 
(b) ( Y, St) is topological transitive with periodic points dense and the homo- 

morphism pO+ ( y, Sz) is left-resolving. 

PROOF. We assume (a) and prove (b). After recoding one has an irreducible 
state transition graph (~, A, ~P) whose labeling W is 1-bi-resolving, and 

v~: (x~, &×N)-" (Y, s~). 

Since (~,, A) is irreducible and ~P is 1-bi-resolving it follows that W( + )- 
equivalence and ~P(- )-equivalence are the same. Identifying =-0+(Y, S~) as 
well as E~ (Y, St) with Y--v, and setting 

w=Sr. .X l 

one has a commutative diagram 

(x °_ ( Y, s~), s o ( ]I, s~)) ~ (x°+ ( ¥, s~), s0+ ( ¥, s~)) 

( r ,  St) 
Q.e.d. 

Given a homomorphism 

v: (Y, Sz )~(Y ,  St) 

of sofic systems one can form the fiber product (X+(v),S+(v)) of 
(X+(Y, St), S+(Y, Sz)) and (X+(I?, St), S+(17", St)) with respect to v,p+(Y, St) 
and p+(l ~, St), and has then the projections 

7t+(v) : (X+(v), S+(v))---, (X+(Y, St), S+(Y, St.)), 

~+(v) : (x+(v), S+(v))--(x+(f', st), s+(f', st)). 

Similarly one has the fiber product (X_(v), S_(v)) of (X_(X, Sr), S+(Y, St)) 
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and (X_(~',St),S-(~',St)) with respect to vp_(F, Ss) 
projections n_(v) and/t_(v). The commutative diagram 

(X_(Y, Sz), S_(Y, Sz)) , (Y, Sz) , 

~-(v V 
(X_(v), s_(v)) v 

~ _(v) 

and p_ (I ~, St) and 

(X+(Y, Sz), S+(Y, &)) 

NN~+(v) 

(x+(v), s+(v)) 
~+(v~// 

(X_(L &), S_(L &)) - - - .  (L  St) ~ - -  (X+(L &), S+(I~, &)) 

can be completed by forming in addition the fiber product of (X_(v), S_(v)) 
and (X+(v), S+(v)) with respect to ~t_(v) and ~t+(v), that projects then also onto 
(X_+(Y, St.), S_+(Y, Sz)) and (X_+(~', St.), S_+(~', St)). If here v is #oven by a 
l-block map • then the state space of (X+(v), S+(v)) is #oven by 

{(a, E, ~ ) e X  X -=+(Y, &) X -=+(?, &) : Z(#) n E ÷ ~ ,  Z(q~a)) n ~ ÷ ~ } 

and a transition from an element (a, E,/~) of this state space to another 
element (a', E',/~') is allowed precisely if 

E' ffi SzPo.®)(Z(Ü) N E) and ]~' -- StPo.®~(Z(dp(~)) N I~). 

Some of the properties of v are reflected in the diagram. E.g., v is right resolving 
if and only if/t+ (v) is right resolving. Also, if (Y, Sz) is topologically transitive 
with periodic points dense, and if v is right resolving, then (Y, Sz) is Markov 
precisely if p+(Y, Sr.);z+(v), when restricted to the appropriate irreducible 
component of (X+(v), S+(v)), becomes a topological conjugacy. Indeed, let 
(Y, Sz) be Markov, and recode such that one has an irreducible Shannon graph 
(Z, ,4, ~P) and v -- vv. Denote by [o]v the W-equivalence class of a o EZ, and 
define a shift-commuting map flQP) of (XA, SzxN) into (X+(v), S+(v)) by 

#(~((a,, k,),~z) = ('e(a,_,, k~_~, a~), (a,, k~), [a,-,lv)~z, (a,, k,),~ze X~. 

~(~P) is a topological conjugacy of(XA, Sz×N) onto an irreducible component of 
(X+(v), S+(v)), whose inverse is the appropriately restricted ~+(v). Note also 
that/t+(v),O(~P) is a presentation of a canonical homomorphism of the topologi- 
cal Markov chain (Y, Sz) onto the irreducible canonical extension of (Y, ~t). 
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4. A class of finitary codes 

We consider topologically transitive sofic systems (Y, Sz), (]~, St) with 
periodic points dense. Let/~y be the measure of maximal entropy on (Y, Sz). 
We consider finitary codes v between (Y, Sz) and (Y, St). By this is meant a 
shift commuting densely defined and ~y-a.e. continuous map of Y into ~'. To 
be definite we let the domain of definition Du of u be the maximal ~6 to which 
it can be extended by continuity. We require that v has bounded anticipation 
and that its coding time has moments of all orders. This means that there is an 
I E N  and a m a p x - ~ i ( x ) ~ 0  (x~D, , )  such that (UX)o is determined by 
xt_~tx)~ ], and such that 

f < > 1. oo, P 

We remark at this point that for all codes that are constructed in this context 
one has" actually that for s o m e ,  > 0 

/~r(xED~:i(x)>n}<-_e -a~, n ~ N .  

We call the code u resolving, if all points y in Du, except those in a/~r-nullset of 
the remote past, are uniquely determined by uy together with any of the initial 
segments yt_®.jj, i E Z. 

(4.1) THEOREM. Let ( Y, S~), ( I', St) be topologically transitive sofic systems 
with periodic points dense and equal entropy log ;t. With f~(z) the minimal 
polynomial of;t, and let the inverse of the zeta function of(X°+ (I 7", S~.), SO+ (Y, Sz)) 
and (X°+ (f:, St), SO+ (~', St)) be f~ (z-  l) (up to a power of z). Then the following 
are equivalent: 

(a) There exists a :zra.e. finite-to-one resolving finitary code between ( Y, Sz) 
and (~, St) with bounded anticipation whose coding time has moments of all 
orders. 

(b) There exists a/~ra.e, one-to-one finitary code between ( Y, Sx) and ( I:, St) 
with bounded anticipation whose coding time has moments of all orders. 

(c) (X°+ ( Y, S~), SO+ (Y, S~)) and ()to+ ( ]:, St), SO+ ( ]:, St)) are shift equivalent. 

PROOF. It suffices to observe that the sections z°+ (Y, Sz) are finitary codes 
with bounded anticipation whose coding times have moments of all orders, 
and to apply Theorem (4.2) of [5]. 

(4.2) COROLLARY. Let (Y, Sz) and (I 7", St) be topologically transitive sofic 
systems with periodic points dense and equal entropy log ;t. With f~(z) the 
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minimal polynomial of 2, let the inverse of the zeta function o[ 
(X°+(Y, St),SO(y, St)) and (X°+(~',St),S°($',St)) be (up to a power of z) 
f~(z-~). I f  there exists a resolving homomorphism of(Y,  Sr) onto (~', St) then 
( X°+ ( Y, St), S ° ( Y, St)) and ( X°+ ( ~', St), S ° ( ~', St)) are shift equivalent. 

PROOF. A resolving homomorphism is a finite-to-one resolving finitary 
code that has bounded anticipation and bounded memory. Q.e.d. 
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